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The model of a single inbite disk oscillating 
about a state of steady rotation 

By A. F. JONES 
Department of Mechanics, The Johns Hopkins University 

(Received 14 May 1969) 

The flow produced by a disk performing small oscillations in a rotating system 
is considered. Results are obtained for the first-order harmonic velocity and the 
second-order steady velocity. It is then shown that this mathematical model 
does not always represent an axially bounded fluid in the limit of infinite separa- 
tion, and to be general one must allow a steady, azimuthal, perturbation velocity 
with an arbitrary value to exist at infinity. 

1. Introduction 
Hunt & Johns (1963) discussed the boundary-layer flow produced over a 

smooth sea bed by tidal or gravity waves. They began by neglecting effects due 
to the earth’s curvature, assuming that the earth could be considered as flat 
about any given latitude while retaining any effects due to the earth’s rotation. 
They also restricted their waves to be harmonic in time with a small amplitude of 
oscillation which allowed a first approximation to be obtained by linearizing the 
equations of motion. They thus showed that, to highest order, the balance of 
forces in the boundary layer was between the viscous, accelerative and Coriolis 
forces. Their solution, apart from its possible practical application, was interest- 
ing because of a singularity that it contained. This occurred when the latitude 
took a certain, specific value (the actual value depended on the strength of the 
earth’s rotation and on the frequency of the wave), whereupon a solution could 
not be obtained by linearization techniques alone. Although they noted this 
effect, Hunt & Johns did not pursue their analysis of this singularity any 
further. 

Benney (1965) examined another problem, which is in many respects directly 
analogous to the one just described. We shall now describe this problem in some 
detail, since it will be considered further in this paper. A semi-infinite fluid of 
density p and kinematic viscosity v lies above an infinite disk. Both the disk 
and the fluid are assumed to be in a state of uniform rotation (angular velocity 
Q) about an axis normal to the disk. Small torsional oscillations of magnitude 
w ,  frequency g, are then superimposed on the basic rotation of the disk. The 
oscillations are small in the sense that w < !2, which, as we shall see, implies that 
the Coriolis force will always be of more importance than the centrifugal force, 
The problem is to determine the fluid motion when a purely periodic state has 
been reached. 
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As is immediately apparent from the condition of no-slip, the effect of oscillat- 
ing the solid boundary is to produce near the boundary additional azimuthal 
and radial velocity components with the same frequency and order of magnitude 
as the disk's oscillations. To satisfy continuity requirements, it is then necessary 
for a small axial velocity to come into existence and to persist into the far field. 
These harmonic terms are only first approximations to the exact solution andthey 
interact in the non-linear terms of the equations of motion to produce velocity 
components which are steady or a multiple of the basic perturbation velocity. Of 
particular interest are the steady components of the velocity. This is partly 
because the mean flow often has a greater significance than the oscillatory motion 
and partly because the equation for the steady motion is singularly different in 
nature to the equations for the time-harmonic components of the flow. 

To demonstrate the difference, the special case of CT+ 0 when the problem ap- 
proaches a steady state is discussed in detail. From the results obtained it is 
deduced that the mathematical model may not always correspond to the intended 
physical situation. That is, the state of basic rotation Q, which has been proposed 
for the disk and fluid, need not necessarily be the limit of a problem in which a 
boundary in the far field also rotates with angular velocity Q. To investigate this 
further, a second disk, parallel to the first one and with the same rotation, is 
introduced to bound the fluid a finite distance away. The results show that if 
the single-disk problem is to correspond to the two-disk problem with large 
separation, the boundary conditions for the single-disk problem must be amended 
to allow for the possibility of a steady, azimuthal velocity in the far field. 

2. The equations of motion 
Cylindrical co-ordinates (P,8,2) are chosen with accompanying velocity com- 

ponents (G,v", 8). The disk is defined by the equation z" = 0 with P = 0 a8 its 
axis of rotation. Assuming axial symmetry, the equations of motion are: 

aii ii a@ -+;+- = 0, aT" r a2 

where f is time and P pressure. The boundary conditions are: 

and 
as E+m, all F , Z .  

C+O,  

,ij+ QP, 

(2.3) 

(2.5a) 

(2 .5b )  
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In  using complex notation it is to be understood that the real part of the equa- 
tion is to be taken. The factor of two in the second boundary condition is st matter 
of convenience. 

Three simplifications of these equations are now possible. The first is an assump- 
tion, drawn from the geometry of the problem, that the radial variable P can be 
eliminated as a similarity variable. Secondly, the equation of continuity allows 
the introduction of a Stokes stream function. Thirdly, it  is more convenient 
to change the co-ordinate axes to a rotating system with angular velocity Q. 
These considerations motivate the following transformations : 

G = - 2P(Z, t) ,  aP 
.ii = r‘- (2, t) ,  az 

P 
- = $P2PP,(Q + P 2 ( Z ,  8). 
P 

E = Q2P + 2+G(Z, Z), 

Equations (2 .1)  and (2.2) become 

Equation (2 .3)  serves only to determine the vertical pressure gradient P,, 
while (2.4) is automatically satisfied. Furthermore, to satisfy the boundary con- 
ditions at  infinity, (2 -5b) ,  it follows that 

P,(f)  = a2. (2.9) 

Finally, we introduce dimensionless variables. With an infinite fluid, any length 
scale has to be based on the viscosity v, and on physical considerations one would 
expect two particular length scales to be important. These are the Stokes layer 
thickness, (v/cT)*, and the Ekman layer thickness (v/Q)&. The former would be 
more important if CT 9 Q, when the viscous force would balance the acceleration; 
the latter would be important if 9 CT, when the viscous force would balance 
the Coriolis force. In  fact, it  turns out that the lengths which arise are combina- 
tions of these ( 4 2 Q  f a), and as a result there is no basic difference in employing 
either. We shall actually choose the Ekman layer thickness as the natural length 
scale for the system. Hence, 

i 
3 

z” = (&) z, tl = r l t ,  0 = wG, 

ap 
- 2w- .  

aP 
az 

Under these transformations, (2 .7)  and (2 .8)  become 

apt 
at 

F“-p- + G  = 4 P t 2 - 2 F P ” - G 2 ) ,  

aG G-p--.F’ = ~ E ( G F ’ - F G ‘ ) ,  
at 

(2.10) 

(2.11) 

(2.12) 
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where E and p are dimensionless parameters defined by 

w 0' 
and p = -  

2Q' 
(2.13) 

and a dash represents a differentiation with respect to z. These equations are 
to be solved subject to the boundary conditions, 

(2.14) 
F = aF/az = 0, G = eit a t  z = 0, all t. 

aF/az+O, G-tO as z+m, allt. 

3. The perturbation solution 
We now look for an asymptotic solution as E --f 0. To do this, one would norm- 

ally assume formal power series expansions in E for F and G ,  and proceed from 
there. It is more convenient, however, to note that because of the boundary 
conditions, the first-order solution would be simple harmonic in time, the 
second would be steady and second harmonic, the third simple and third harmonic, 
and so on. Consequently, a more useful expansion is 

P - Fo,(x)eit + s[Flo(z) + F,,(z) eSit] + e2[P2,(2) eit + &(z) e"] i- . . . , (3.1) 

for F ,  with a similar expansion for G. 
We will content ourselves with the calculation of the fist-order solution and 

the second-order steady solution. To obtain the equations for Fol and Gol, (3.1) 
are substituted into (2.11) and (2.12) and terms are equated whose coefficient is 
E to the power zero. Thus, F& -piF& + Go, = 0, 

G& -piGo, - FA1 = 0, 

while the boundary conditions are 

Fol(0) = F&(O) = 0, GOl(0) = 1, F;,(co) = G,,(co) = 0. (3.3) 

where a and p are defined by 

negative real parts. 
P = W P -  1)14 

The solution fails when p = 1. Physically, the cause of this can be traced to a 
resonance on feedback situation far from the disk (where viscosity is relatively 
unimportant) between the accelerative and Coriolis forces. The singularity 
corresponds exactly to the one discovered by Hunt & Johns. If a solution exists 
in this case, it can only be because the non-linear terms of the equations of 
motion eventually bound the far-field growth of the solution. Thus, any simple 
asymptotic expansion such as (3.1), which initially neglects the non-linear terms, 
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will be unable to give a solution. Similar resonance situations occur for the har- 
monic ewhenpnit = l/n (n = an integer). The case p = 0 is especially interesting, 
since it is near to an arbitrarily large number of such singularities. These will 
each be associated, however, with E raised to the power n, and it is to be hoped 
that, for small e, their effect forp close to zero can be neglected. We shall be assum- 
ing that p -+ 0 is a regular limit. 

The equations for F,, and G,, come from (2.11) and (2.12) after substitution 
of (3.1). The steady terms, whose coefficient is 8, are: 

(3.5) 
Pro + G,, = iF&P& - Fo1Pi1- iGolG01, 

G;o - KO = (GoiPb - &GAi), 
with boundary conditions, 

The solution of these equations, although straightforward, is very complicated 
algebraically. It takes the form, 

(3.7) } 
F,, = C + terms that decay exponentially with z, 

G,, = terms that decay exponentially with x ,  

where Cis a constant for any given value ofp. (For further details, here and later, 
see Jones 1968.) 

The value of C, regarded as a function ofp,  is interesting, since it represents 
the steady, axial velocity far from the disk. The numerical values have been 
calculated using a computer and are represented in figures 1 and 2 for the range 
0 < p 6 100. Values of C ( p )  that are positive represent an inflow towards the 
disk from infinity, and it can be seen that there is a transition point between 
inflow and outflow for p M 4.3. C(p) has its maximum value at  p M 9, and the 
change in nature of C ( p )  for p < 9 and p > 9 is marked. The negative values of 
C ( p )  are greater in magnitude than the positive values by a factor of about 10, 
and there is a gradient discontinuity at p = 1, the resonance point. 

Benney in his paper gave only three limiting values, namely, 

which agree with our results. However, it should be mentioned that the limit 
p+ 1 does not commute with the limit z - too .  Thus, if p is allowed to approach 
unity in the complete expression for PI,,, including exponential terms, the value 
for the constant at infinity is (137 - 11642)/34. This is important if a proper 
treatment of the resonance phenomenon is attempted. We shall see later that 
the limit p -+ 0 also has to be treated with care, because we are considering a 
mathematical model with a non-uniformity near to this value. 
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4. The two disk problem 
When p = 0 the solution (3.4) becomes 

(4.1) 

x --exp(----z)+$, 1 - i  

;;2;exp (-$ ) ;i; 4 2  
G,, = i(exp ( - - x )  l + i  +exp (- 9.)). 
POI = -- 
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Nowp = 0 implies CT = 0, which means that the problem is time independent. 
The harmonic factors in the expansions (3.1) all reduce to unity when trans- 
formed to real co-ordinates. Thus, the solution (4.1) is the linearized flow solu- 
tion that occurs when a disk rotates with a small, steady perturbation velocity 
above the basic state of rotation. That is, we have an Ekman layer. However, 
as is well known for this problem, if the fluid is bounded in the axial direction by 
some rigid surface, this boundary will not have the rotational speed of the 
interior of the fluid. In fact, the interior adopts some intermediate angular velocity 
between those of the two boundaries, and an Ekman layer forms at both surfaces. 
While this is easy to understand for a steady flow ( p  = 0) ,  it  is not clear how the 
fluid interior and some di&ant boundary will be connected in the general, oscillat- 
ing disk problem (I, =I= 0). 

To investigate this, suppose there is a second disk in the fluid at  Z = d, which 
rotates with the basic angular velocity IR. The equations of motion can be 
reduced to (2.7) and (2.8) as before, but we shall now introduce dimensionless 
variables using the length scale d:  

x" 

The radial pressure gradient cannot be eliminated as before but to simplify it, 
we can write 

Equations (2.7) and (2.8) then reduce to 

P,(z, t )  = w+ 4wQK(t) .  (4.3) 

where a dash now represents differentiation with respect to 6, and E is the Ekman 
number, 

The boundary conditions are 

(4.6) 
9 = F' = 0, 3 = eit, on 5 = 0, 

9 = w = g = 0, on g =  4 2 .  

Again, we look for asymptotic expansions for small E by assuming expansions 
of the form, 

and similarly for 9 and K .  

S - SO1(C) eit + e[FlO(6) + .F&) e2it] + . . . , (4.7) 

The first approximation is found by the usual means, and the equations are 
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The boundary conditions are identical with the boundary conditions (4.6). 
The solution is 

P(42 - 4 + M ,  

(4.9a) 
JE 

+ D cosh 

1 ia az ia 4 4 2 - z )  

JE 
3ol = rKol-A-sinh-+B-sinh 

-P2 JE JE JE 

where a and /? were defined in Q 3, and 

1 pJ2 JE(1- coshaJ(2/E)} JE(1- COSPJ(~/E)} 
K + I -pz (1 +p)asinha J(2/E) (1 -p)PsinhP2/(2/E) 

and 
iJEK01 

B =  2a sinh a2/(2/E) [ -I+&], \  2(l+p)asinhaJ(Z/E)’ 
A =  

iJEK01 D =  
2(1 -p)PsinhPJ(2/E)’ 

C =  

M = A + B  cosh aJ(2/E) - C- D coshPJ(2IE). I 
We shall first consider this solution in the limit of E + 0 subject to. 

p 2  9 E. (4.10) 
The exponential terms of the solution represent shear layers near to the disks. 

Near the lower disk perturbation velocities of O( 1) are produced radially and azi- 
muthally corresponding to the O(1) perturbation on the motion of the disk. 
To satisfy continuity this produces an axial velocity of O( 4E). Just beyond the 
lower boundary layer, the respective velocities are: 

1 E l  1 

radial N f J- E l  (---) 1 + O(E), 1 azimuthal N - J- (- - -) +O(E), 
2P 2 P a  

2 z a p  (4.11) 

axial N iJE(l __ --- ’)+o(E). J 
2 P a  

The azimuthal and radial velocities persist to the far boundary. Since there 
is no perturbation on the motion of the far disk, the azimuthal and radial velo- 
cities will also be O(JE) in the upper shear layer. This means that the axial 
velocity in the upper shear layer will be O(E).  The change in magnitude from the 
O( J E )  velocity at  the edge of the lower boundary layer is brought about by 
the pressure gradient, which is given by 

KO, N -4- 1-p2 E (- 1 --) 1 +O(E).  
2P 2 P a  

(4.12) 



Model of a single injnite oscillating disk 265 

It is not difficult to verify that this limiting solution, taken subject to (4.10) 
corresponds to the single-disk case previously considered. The shear layer at the 
lower disk is properly regarded as a modified Stokes layer. The solution should 
be contrasted with the one obtained in the limit E --f 0, when 

$9 Q E .  (4.13) 

The structure of the solution is then quite different. In  the lower shear layer, 
the radial and azimuthal velocities are again O( l), and the axial velocity again 
O( JE).  However, just beyond the shear layer, the radial velocity falls to 

radial velocity N k! 4 O(AE), (4.14a) 
2 

while the azimuthal velocity remains of O( l ) ,  

azimuthal velocity N Q. (4.14b) 

The axial velocity is given by 

axial velocity - ( 4 . 1 4 ~ )  

All of these velocities persist as far as the outer edge of the upper shear layer. 
In the upper shear layer, the velocities are brought to rest, and this necessitates 
velocities there of corresponding order to the velocities in the lower shear layer. 
The difference between this case and the last one is the strong action of the Coriolis 
force, which prevents fluid from being thrown out radially in the interior. Radial 
velocities of O( 1 )  can exist only in the shear layers, where the viscous force is 
important. The action of the accelerative force is always small. Thus, in this case, 
the shear layers are properly thought of as modified Ekman layers. In  the limit 
E --f 0, it does not correspond to the single-disk case previously considered. The 
correct boundary condition for the single-disk problem to make it correspond is 

$9+& as 6-+00, (4.15) 

and not g + 0 as 6-+ 00. It is not then possible to eliminate the pressure gradient 
from the equations of motion by using (2.9). 

5. The second-order steady solution 
We can conclude from the above discussion that when p is not actually equal 

to zero, the two-disks problem taken in the actual limit of E = 0 will correspond 
to the single-disk problem to first order in E .  The question remains to be asked 
whether the two problems correspond completely when p 4 0 or whether they 
do not, The answer is, that they correspond only as far as the first asymptotic 
approximation and no further. If we examine the second-order equations, it 
can be seen that the same type of discontinuity will always exist for the steady 
velocity components. Their equations are 

EFG + g,, = K,, + steady part {FAT - 2FOl 9 g 1  - 'i%;,], 

BV;, - F;, = 2 steady part {$901&l - ~ o l ~ ~ l } .  
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The homogeneous part of these equations corresponds exactly to the first- 
order equations (4.8) when p = 0. Thus, away from the shear layers, the Coriolis 
force will dominate the motion, and prevent any radial motion. The result will 
be a finite, O(E), azimuthal velocity and radial pressure gradient in the interior. 

For simplicity, suppose we consider the problem in the limit of E+O. This 
simplifies the algebra and the solution takes the form 

J - ipce- (p /dE)z  - ihde-(AidE)s + M,,] + o ( ~ E ) ,  

where 9 and 9 are particular integrals of (5.1) and correspond to the particular 
integrals obtained in the single-disk solution. ,u and h are defined by 

(5.2b) 

and a, b, c, d and m are constants for any value ofp.  They and K,, have to be 
determined by the six homogeneous boundary conditions, namely, 

F,, = FA, = go, = 0; g = 0, g = 4 2 .  (5.3) 
The two important results that are derived by this are 

(5 .4a )  
= (1/2 J2) ( d2n1 + n2 + n3), 

K,, = H 42% + n2 + 4, 
where 

I (5 .4b)  

It follows from this that a necessary condition for K,, (and hence the interior 
azimuthal velocity) to reduce to zero is that there is no axial flow in the interior 
(m = 0). This corresponds to having C(p)  of (3.7) equal to zero, which only occurs 
for one value ofp, p w 4.3. Otherwise the results of the one-disk problem and the 
two-disks problem will not agree. They can be brought into agreement, however, 
by rotating the upper disk with a steady (dimensionless) perturbation velocity 
of el?. It is possible to choose r = I?,@) so that K,, is zero. The condition for this is 

r,(P) = - t(4% + n2 + n3), (5.5) 

when the steady outflow from the boundary layer is 

which, except for a dimensional scaling, equals C(p) .  
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Of course, this gives agreement only to O(E),  and the singularity will reappear 
in the steady O(e3) terms, and indeed recur throughout the asymptotic expansion. 
Presumably by defining the perturbation velocity Po as a suitable power series 
in E ,  ro = roo + s21',, + dr,, + . . , , 
the azimuthal velocity could always be made to approach zero in the interior, 
and so achieve complete correspondence between the single-disk and two-disk 
problems. This is rather an artificial case, however, and it can be concluded that, 
when studying the single-disk case, one should allow a steady, azimuthal velocity 
with an arbitrarily prescribed value in the far field. The actual value will depend 
on the rotational speed of the far boundary, and a zero perturbation velocity 
there will not necessarily imply a zero interior velocity (although it will imply 
that the interior velocity is O(s) for most values of p ) .  In  a subsequent paper 
(Jones 1969) it will bs shown that this steady far-field velocity, although small, 
can be very important when one considers the resonance point p = 1. 
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thesis submitted to the University of London. I should like to express my deepest 
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very interesting subject. I should also like to thank Dr D. L. Misell for computing 
assistance, and to acknowledge the receipt of a grant from the Science Research 
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